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Abstract. The effective-medium approximation formulation of electron transport in dis- 
ordered metals due to Roth and Singh is reconsidered using the muffin-tin potential model. 
The theory is reduced into a tractable form by using the non-overlapping condition of muffin- 
tin spheres. The major part of the off-shell correction is shown to be absorbed in the on-shell 
expression by adding simple correction factors. 

1. Introduction 

The description of electron transport in terms of the T-matrix in disordered metals has 
been an attractive problem for quite a long time because of its simplicity in describing 
the scattering event from individual scattering centres. The non-overlapping muffin-tin 
potential model is expected to be especially suitable considering the success of the KKR- 
z formalism in the electronic structure calculations. In particular the electronic density 
of states in this model is shown to be determined solely by the phase shifts of the scatterers 
in their arbitrary arrangement (Lloyd 1967). The model is therefore also useful for 
disordered materials, combined with analytic theories to deal with the randomness and 
the short-range order in the system. The coherent potential approximation has been 
applied to many solid alloys (see, for a review, Ehrenreich and Schwartz (1976)), and 
the calculations have also been performed for liquid metals using the effective-medium 
approximation (EMA) (Asano and Yonezawa 1980, Huisman et a1 1981, Nishikawa and 
Niizeki 1984). The simplest application of the T-matrix formalism to electron transport 
is the so-called extended Ziman formula (Evans et a1 1971). In spite of the fact that the 
formula neglects the multiple-scattering processes, it has been extensively used for liquid 
and amorphous metals including transition metals and rare earths. In these systems the 
multiple-scattering processes play essential roles and therefore a proper theoretical 
treatment must be developed to include higher-order scattering. The calculation using 
the Kubo-greenwood formula and the Green function technique is the first candidate for 
this purpose. When it is combined with the T-matrix via the relation G = Go + GOTGO, 
however, the free-electron divergence in the conductivity is separated out. Therefore it 
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is not easy to obtain finite and physically meaningful results by summing higher-order 
contributions; one needs highly sophisticated renormalisation of the current vertex part 
as well as of the electron propagator. The second problem to be considered is that the 
ensemble average is to be carried out in a consistent way with the condition of a non- 
overlapping arrangement of the muffin-tin potentials. The problem has already become 
important in electronic structure calculations. The atomic short-range order must be 
taken into .account properly for liquid and amorphous materials to avoid unphysical 
configurations. Finally it must be noted that the transport theory cannot be formulated 
in an on-shell form; that is, the phase shifts are not the only parameters which determine 
the transport property of the system. In this respect the situation is more difficult than 
in the calculation of the electronic density of states. Although information about the 
energy eigenvalues is included in the wavefunction outside the muffin-tin spheres, it is 
obvious that the whole wavefunction is necessary to calculate the current matrix element. 
In other words the acceleration of an electron inside the muffin-tin potential is related 
to the conduction. 

In spite of the difficulties mentioned above, the scenario was almost completed by 
Roth and Singh (1982), who applied the EMA to transport. The EMA is known to be 
consistent with the non-overlapping condition (Roth 1975, Watabe and Yonezawa 1975, 
Yonezawa et a1 1975, Yonezawa and Watabe 1975) and they obtained a set of coupled 
non-linear integral equations for the vertex corrections in terms of suitably renormalised 
quantities. However, these equations are apparently very complicated because of the 
electron momentum integrations in addition to the ionic momentum integrations, which 
is the reflection of the off-shell character of the problem. Their comment is that the 
calculations are just ‘horrendous’. 

In this paper, we diagrammatically analyse the theory to show that it is indeed 
possible to reduce the formalism into a tractable form. The integrations with respect to 
the electron momentum variables are in fact carried out if we deal with non-overlapping 
muffin-tin potentials. Then we separate the off-shell contributions into two parts. The 
major contribution is included in the ‘conventional’ terms which leads to the classical 
Boltzmann expression in the weak-scattering limit. The remaining small corrections can 
be neglected quantitatively and have no classical counterparts. We present the result in 
the angular momentum representation, which is not given explicitly in the paper by Roth 
and Singh. 

2. EMA for the transport 

We briefly review the transport theory by EMA for a muffin-tin potential model and 
rederive the result of Roth and Singh in a slightly different form, emphasising the role 
of the non-overlapping condition. We partly follow the notation due to Roth (1980). 
Given a T-matrix tR associated with the muffin-tin potential located at R, the EMA 
equations are written in the following form: 
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Figure 1. Diagrammatic representations of equations (2.1), (2 .2 )  and (2.4). The topological 
equivalence to the tight-binding EMA should be noted. 

(2.4) 

In the above equations, Go is the free-electron propagator, g(R - R') is the radial 
distribution function and h(R) = g(R) - 1. All the quantities are ensemble-averaged 
quantum operators for an electron dependent on parameters R, R ' ,  . . . .  representing 
the ionic positions. In particular, Q(R, R'), the scattering path operator, represents the 
scattering process starting from the position R and ending at R ' ,  and the T-matrix of the 
whole system is the sum of all the possible processes: 

T = dR dR'  Q(R, R'). (2.5) i 
Qd(R) is the operator representing only diagonal processes in Q,  and q(R) and G(R, R ' )  
are the auxiliary quantities to complete the set of 'building blocks' of the theory. The 
diagrammatic representations of (2.1), (2.2) and (2.4) are given in figure 1. We see that 
the topological structure of q(R) and G(R, RI) are equivalent, respectively, to those of 
the self-energy and the renormalised transfer in the tight-binding EMA (Roth 1975, 
Yonezawa and Watabe 1975). Our set of equations (2.1)-(2.4) are given in a slightly 
different form from that given by other researchers but the equivalence is clear. Now 
according to the Kubo-Greenwood formula the calculation of the conductivity tensor is 
reduced to that of 

E(E,  E ' )  = Tr(J(GJG')), (2.6) 
where G = ( E  - A)-' is the Green function operator for any given configuration and 
( .  . . )  denotes the ensemble average. It should be noted that G is distinguished from 
G = (G); the circumflex is put on the operator before the ensemble average. We do not 
need it on J because j = J (the same can be said for Go). The prime on the second G 
means that the energy has a different value E' # E ,  i.e. G I  = (E '  - A)-'. We follow 
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this convention hereafter. The quantity (2.6) is generally divided into a correlated and 
an uncorrelated part: 

=(E, E ’ )  = So(E, E’ )  + =,.(E, E ’ )  (2 * 7) 
where 

&,(E, E’ )  = Tr(JGJG’) 

and Ec(E, E’ )  is referred to as the vertex correction. 

defined by 
Roth and Singh gave a prescription for calculating the ‘variation’ in G,  which is 

SG = (GJG’) (2.9) 
and applied it to the EMA to calculate =(E, E’) .  Here we repeat their argument in a 
slightly different form. First we take the variation in basic quantities. The variation in 
Q is derived from (2.1) and (2.3) by noting that 6CR = tR 6Go C R :  

(2.10) 

Ec(E, E’)  = 11 dR1 dR2 1 j dR3 dR4 Tr{SGo Q(R1, Rz) 

X [SG(R2,R3) - dGolQf(R3,R4)1 

+ 1 I I dR1 dR2 dR3 Tr{GGo Q(R1, R2) 

X [SGo + ~ v ( R ~ ) I Q ’ ( R ~ ~ R ~ > >  (2.14) 

where we have made use of the relation Gb JGo = GoJGA = SGo. 
Equations (2.11)’ (2.12) and (2.14) are expressed diagrammatically in figure 2. Note 

that the uncorrelated part is included in the contribution from Gin (2.14) and should be 
subtracted. The diagram (11) in figure 2(C) refers to this correction. Equations (2.10)- 
(2.12) are to be solved simultaneously to obtain SG and Sq. The first and the second 
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Figure 2. Diagrammatic representations of equations (2.11), (2.12) and (1.14). Topological 
equivalence to the result of Itoh et al(l981) is clearly seen. 

terms of (2.14) correspond respectively to the contributions from 6W and 6 K o  in the 
paper by Roth and Singh. Our equations appear to be different from their equations; 
the diagonal part is particularly different. This is because our starting equations are 
written in different forms. The present form is more convenient for later development 
because it has exactly the same topological structure as the EMA transport theory in the 
tight-binding representation developed by Itoh et a1 (1981). 

3. Angular momentum representation and off-shell corrections 

So far we have developed the formalism in the general operator form. The trace opera- 
tion to calculate the conductivity tensor may be performed in an arbitrary representation. 
However, since our muffin-tin potential is spherical, the decomposition of the electron 
wave into its angular momentum components is particularly useful for practical cal- 
culations. 

The translational invariance of the system is such that the averaged quantum oper- 
ators are represented in the relative coordinate form (Roth 1980): 

where M represents any one of the quantum operators appearing in our equations. In 
accordance with (3.1) it is convenient to introduce the following Fourier transformation: 

(rIM(R, R’) l r ’ )  M ( r  - R ,  T’  - R ’ ;  R - R ’ )  (3.1) 

MPP’ K = 1 1 1 d p d p ’ dX exp(iK - X - ip - p + ip’ - p ’) M ( p ,  p I; X) (3.2) 

where p = r - R ,  p‘  = r’ - R ‘  and X = R - R‘ represent the relative coordinates. The 
decomposition into electronic angular momentum components is then given by 

M y ‘  = 4n Y L ( p ) M k L ’ ( p , p ’ ) Y Z , @ ’ ) .  (3.3) 
L,L’  

The above decomposition (3.3) of (3.2) also applies to operators which do not depend 
on ionic variables. In the case of the free propagator, for example, 

(3.4) (rlGolr’) = -(1/4n) exp(iKlr - r‘l)/lr - r’l = Go(p - p’ + X) 
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where E = K', and therefore it becomes 

Gkk'(p,p') = ( 2 ~ ~ / ~ ~ ) 6 ( p  - K ) G ~ ~ ' ( K ) ( ~ z ~ / K ~ ) ~ ( ~ ~  - K )  (3.5) 
where 

G ; ~ ' ( K )  = Y z  (K)[~z/'(E - K ~ ) ] Y L , ( K ) .  

The 'artificial' dependence of Go shown in (3.4) on the ionic variables has to be 
assumed suitably in equations (2.2) and (2.4). In (2.2), Go is to be understood as 
G,(R - R ' ) ( i . e . p = r - R , p '  = r '  -R 'andX=R-R' inequat ion(3 .4) ) toconform 
with g(R - R')  attached to it. In the same way Go in (2.4) should be interpreted as 
Go(R2 - R), since it represents the propagation to the original location R from Rz in the 
diagonal process of the multiple scattering. 

The delta functions in (3.5) show that the free-electron propagator carries the 
electron momentum p = K ,  which is away from the energy shell p = K. It is very 
important to note that, in the non-overlapping muffin-tin potential model, it can be 
replaced by the 'on-shell propagator' (Lloyd 1967) (see also Ehrenreich and Schwartz 
1976) defined by 

B k L ' ( p , p ' )  = (27+2)6(p - K)BkL'(K)(22T?/K2)6(p1 - K) (3.7) 
where 

in so far as it represents the real propagation between two scatterers in the multiple- 
scattering processes, In the above equation, C f b "  is the Gaunt number: 

CL+" = d Q  Y E ( Q ) Y , , ( Q ) Y Z , , ( Q )  (3.9) 
L' i 

and B k L ' ( ~ )  differs from G;~ ' (K) only in the factor (K/K)"' .  The real-space rep- 
resentations of (3.7) and (3.8) are given by 

B(p, p f ;  X )  = 4 n  2 Y t ( ~ ) j I ( K p ) B L L ' ( X ) j I ( K P ' ) Y L ' ( p f )  (3.10) 
LL' 

and 
(3.11) 

where j ,  and hl+ are the spherical Bessel and the Hankel functions, respectively. The 
justification of the replacement is that 

(i) in the multiple-scattering series Go(p - p' + X )  appears in between the two 
scatterers located at R and R and 

(ii) Go(p - p' + X )  coincides with B(p, p ' ;  X )  provided that Ip - p f  1 s 1x1. 
The above inequality is satisfied because the vectors p = r - R and p f  = r' - R ' are 

confined in each of the non-overlapping muffin-tin spheres; otherwise the scattering 
amplitude for this process is zero. 

In the EMA the above situation manifests itself in the fact that we obtain the same 
scattering path operator Q(R, R') ,  and therefore the same T-matrix, when we replace 
two Go-values in equations (2.2) and (2.4) by B. This is confirmed, for example, by the 
expansion of Q(R, R ') into the perturbation series by iteration to see that all the free 
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propagators are together with the radial distribution functions, which enable the relevant 
two scatterers to be apart from each other by more than a muffin-tin diameter. We need 
to rearrange some of the terms to confirm this for the Go-values in Qd(R) (Roth 1975, 
Yonezawa and Watabe 1975). The argument also tells us that insufficient consideration 
of the short-range order would not allow the replacement of Go by B.  So far the EMA is 
known to be the only theory in which we can do this. 

Once Go is replaced by B ,  it is seen by iteration that G also has the same on-shell 
form as B ;  

G F ' ( p ,  p ' )  = (27C2/K2)6(p - K)dF'(K)(2JC2/K2)6(p '  - K ) .  (3.12) 

The angular momentum decompositions of equations (2.1)-(2.4) are thus written in the 
form 

Q ~ ' ( K ,  K) = Q $ ( K ) s , , ,  + x Q : ( K ) G ; L ~ ( K ) Q ; ~ ~ ' ( K ,  K) (3.13) 
L1 

G ~ ' ( K )  = B:'(K) + J h(K - K ' ) G ; ~ ~ ( K ) Q ; ; ' . ~ ( K ,  K ) G ; ~ ' ( K )  (3.14) 

Q ' , (K)  = t ' ( ~ )  + r ' (~>r ' (~ )Qld (~)  (3.15) 

r ' ( K )  = I G ; ~ ( K ) Q ; + ~ ( K ,  K ) B ; ~ L ( K )  (3.16) 

where r ' ( ~ )  = t'(K, K )  = - K - ~  exp[i6,(~)] sin[6'(~)],  the on-shell component of the 
single T-matrix, and B;, ' (K)  is the Fourier transform of B L L ' ( X ) g ( X )  (note that different 
notations are used by Asano and Yonezawa (1980) and Huisman et a1 (1981)).  We have 
also introduced a simplified notation 

LlL.2 K' 

, I L 2  K 

The above equations determine only the on-shell components of QK and Qd. However, 
their off-shell components are easily obtained from them by using the relations 

(3.17) 
and 

where 

where 

The above 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
et al. It is 

easy to see that they are in fact general relations, derived without approximation from 
the multiple-scattering expansion of the total T-matrix. Thus we only need to solve the 
on-shell part of the EMA equations (3.13)-(3.16). Note that Qd becomes diagonal with 
respect to the angular momentum indices (this is a direct consequence of the isotropy of 
the system; the symmetry consideration will be discussed in a forthcoming paper in 
detail). Note, however, that Qd is not the diagonal part of QK with respect to L.  The 
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Figure 3. Separation of off-shell contributions (diagrammatic representations of equations 
(3.14), (3.16) and (3.17)). The off-shell corrections are expressed only by Q, (large double 
circle) andforf(smal1 unfilled circles). 

diagrammatic representations of equations (3.14), (3.16) and (3.17) are given in figure 
3 for later reference. 

Next we proceed to the transport and consider the angular momentum rep- 
resentations of (2.10), (2.11), (2.12) and (2.14). At first sight the representation does 
not appear to be very useful. The argument used to reduce G and y to the on-shell form 
has been dependent on the replacement of the free propagator by B and so it is not valid 
for 6G and Sy. The replacement is not allowed for those in &Go = GoJG(, because they 
do not connect the scatterers. Nevertheless it is shown that a careful consideration of 
the terms leads to the classification of the contributions to the conductivity into the on- 
shell and the off-shell parts in a tractable way. Let us look into the diagrams in figure 2. 
First we note again that G (the bold arrow in the diagram) can still be reduced to the on- 
shell form (3.12) in the angular momentum representation if it lies in between two 
scatterers. All the contributions from figures 2(A) and 2(B) are inserted in the end into 
figure 2(C) to calculate Ec and therefore, by inspection, it is confirmed that every G 
appearing in figure 2 satisfies this condition. Likewise all the Go-values appearing in the 
diagrams (h)-(k) in figure 2(B) can also be replaced by B. Now suppose that we perform 
the iterative expansion of figures 2(A) and 2(B), and substitute all the terms obtained 
into figure 2(C), and that the angular momentum representation is then employed. The 
following expression for 6Go can be used for this purpose: 

SG&'(p,p ' )  = ( 2 7 ~ ~ / ~ ~ ) 6 ( p  - K ) I I F ' ( K ,  K ' ) ( ~ J c * / K ~ ) ~ ( ~ '  - K )  (3.22) 

I I ~ ' ( K ,  K') E Y~(K)[~JcJK/(E - K 2 ) ( E '  - K 2  )IYL'(K). (3.23) 

Because of the &functions in (3.7), (3.12) and (3.22) the integrations with respect 
to the radial parts of the internal electron momenta can now all be carried out. 
The contributions to Ec thus obtained are then expressed in terms of the matrices 
GK, B,, I IK  and QK.  However, there appear to be three possible forms of Q K .  The 
first case appears when Q lies in between the two wavy lines. The simplest examples 
are the terms (11) and (IV) in figure 2(C), and also (I) when figure 2(a) is 
substituted for G ,  In this case the p-integrations pick up the ionic momenta K or 
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= Q +  + 
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Figure 4. Reduction of the diagrammatic equations in figure 2 by using the procedure in 
figure 3. Note that (G) and ( H )  are not the equations for 6G and 67 but define the new 
quantities. 

K '  and Q takes a purely off-shell form Q f ' ( K , K )  or Q F ' ( K , K ' ) ,  according to 
whether it is located in a closed loop (e.g. diagram (11)) or at the nodal position 
(e.g. diagram (IV)). In the second case, Q is situated between one wavy line and 
either of the two on-shell quantities B or c. In this case, Q becomes the 'half- 
off-shell' form Q f ' ( K ,  K )  or Q ~ ' ( K ,  K ) ,  after p-integrations. The large circles in 
figures 2(f), 2(g) and 2(k) belong to this case. The same can be said for those in 
figures 2(b), 2(c), 2(d), 2(h) and 2 ( i )  if figure 2(a) is substituted for G. The last 
case is when Q is not directly connected to the wavy line and the on-shell 
component Q ~ ' ( K ,  K )  is obtained. 

The next step is to decompose Q according to figure 3(C). We shall therefore 
re-express all the diagrams in figure 2 in terms of the double circles and the large 
shaded circles accompanied by the small open circles. At first, it may look as if it 
merely introduces further complications. This procedure is not as complicated as 
it appears, however; the double circle survives only in between the two wavy lines, 
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when Q is purely off shell, since Q , ( p , p ’ )  vanishes if p = K or p ‘  = K. Furthermore 
the small circle becomes unity when p = K ;  thus it is eliminated from the diagram 
in that case. 

The reduction of the diagrams mentioned above is completed as shown in figure 
4. Note again that the wavy line is always accompanied by a double circle or a 
small circle at both its ends. In the latter case we treat the small circle as a part 
of the wavy line hereafter. The former case is a little cumbersome. A double circle 
Q,(K, K ’ )  at a nodal position can be neither combined with some suitable quantity 
nor separated from the rest of the diagram, because it contains two ionic momenta 
K and K ‘ .  For this reason we have introduced in figures 4(E) and 4(F) new 
quantities in order to represent all the contributions to G connected to a double 
circle (the contributions connected to two double circles are included in the first 
terms of figures 4(A) and 4(0), respectively). The quantities in figures 4(G) and 
4(H) form the rest of the contributions to SG and 611, respectively, including those 
with small circles at either end or both ends of the diagrams according to the rule 
described before. We note that the second term in figure 4(C) cannot be obtained 
straightforwardly from figure 2(h) by the same sort of decomposition of SG as that 
used in deriving figure 4(A). It would lead to an expression involving the quantity 
defined by figure 4(F). The topological equivalence between them is guaranteed 
by the symmetric nature of the EMA, although direct proof requires some 
manipulation of the diagrams. 

The equations in figures 4(A)-4(H) complete the solution to our problem. It 
has, however, a drawback of free-electron divergence. In order to remove this, we 
further apply the decomposition g = 1 + h to the initial terms in figures 4(A), 4(E), 
4(F) and 4(G). Then the non-divergent recombinations of the terms are obtained 
naturally by adding figure 4(A) to 4(B), and figure 4(C) to 4(0) ,  term by term. 
The result is expressed in terms of the divergence-free quantities introduced in 
figure 5 :  

E,(E, E’)  = 1 1 S(K - K ’ ) T r [ n , Q , ( K ,  K’) l -IKrQL(K’,  K ) ]  
K K‘ 

+ lK J K , T r { l - I K f ~ Q K [ l  + K’)1  

x (1 + G K t Q K 8 )  = f i f I I K c Q i ( K ’ ,  K ) }  

where S ( K )  = 1 + h ( K )  is the structure factor and the argument K has been omitted for 
simplicity for the on-shell quantities, i.e. QK = Q , ( K ,  K), GK = G K ( ~ ) ,  etc. The symbol 
T r  refers to the trace operation with respect to the angular momentum indices. The 
integral equation for A ( K ,  K ‘ )  is obtained from figure 5 ( D ) ,  and those for WK(K, K’) and 
Kd(K,  K’) are derived by comparing figures 4(G) and 4(H) with figures 5(A) and 5(B):  

A(K, K ’ )  = h(K - K ’ )  + J h(K - K ” ) G r  Q r A ( K ” ,  K ’ )  
K” 

(3.25) 
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Figure 5. Definition of the divergence-free quantities. 

(3.26) 

and 

Kd = KOd + IK [ w ~ Q k B k +  GKQK(WK + Kd)QkBkI (3.27) 

where the inhomogeneous terms WOK and KOd are given by 

and 

(3.29) 

The above result (equations (3.24)-(3.29)) is free of divergence. Although the free- 
electron divergences at K = K appear in nK, GK and B K ,  they are suppressed by 

In order to obtain the conductivity, we must solve equations (3.25)-(3.27) simul- 
taneously. Their solutions are then substituted into (3.24). Note that equations (3.25)- 
(3.27) are written solely in terms of the on-shell quantities except forfK andf, included 
in the inhomogeneous terms. The evaluation of the off-shell corrections are thus almost 
separated from the main part of the calculation. 

Some complication due to the off-shell problem still remains. First we must perform 
the double integrations in the first three lines of (3.24). Secondly the equation for 
A(K, K ’ )  is laborious to solve compared with (3.26) and (3.27). By putting Q, = 0 we 

Q,(K K ’ ) ,  Q K ,  1 + QKGK and 1 + QKBK.  
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are released from the above complications and the labour involved is reduced to the 
level of the tight-binding calculation performed by Itoh and Watabe (1984). In this 
connection it is remarkable that our equations (3.26) and (3.27), together with the last 
term of (3.24)’ have recovered the original mathematical structure; notwithstanding we 
still preserve the major part of the off-shell corrections by keepingfK and fi in the last 
term of (3.24) and in (3.28) and (3.29). In fact our numerical test using the square well 
potential showed that Q,(K, K’)  is very small compared with z, which represents the 
typical magnitude of the on-shell component of Q K .  Even at the maximum position it is 
100 times smaller than z. The maximum positions are of course far from the energy 
shells K = K or K’ = K, where Q,(K, K ’ )  is zero. Therefore, as the peak position of the 
spectral density is around the energy shell, the contributions to E, from the double 
integrals in (3.24) are expected to be extremely small. We thus conclude that Q, can be 
neglected for practical purposes and the off-shell corrections are taken into account 
sufficiently well throughfK andfK. 

4. Summary and discussion 

One of the most important features in the transport problem in liquid and amorphous 
metals is that the influence of the atomic short-range order is crucial. The fact is obvious 
if we recall that the structure factor has a drastic effect in applying the Ziman formula 
for resistivity. The same effect is expected to be even more enhanced for non-simple 
materials in which the potential scattering is strong; a slight change in atomic positions 
should make a substantial difference in the scattering processes if the potential is strong 
(in this connection we note that the distinction must be made between the scattering due 
to the potential and that due to the disorder in discussing the transport processes). 

It is well known that the EMA is the most reliable theoretical scheme in the above 
respect. Its application to transport in the muffin-tin potential model is expected to be 
fruitful considering its success in electronic structure calculations. We have shown that 
the ‘horrendous’ equations for the vertex corrections are simplified and written in a 
divergence-free form, keeping the off-shell contributions. The resulting equations are 
very similar in structure to those in the electronic structure calculations. We have thus 
solved the most difficult part of the problem and derived the necessary equations for 
discussing electron transport. Mathematical treatment of the integral equations is not 
as easy as in the electronic structure calculations because of the vector nature of the 
relevant quantities. This will be discussed in the forthcoming paper. 
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